Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 97: 323-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26519820

RESUMO

We characterized the short-term response to waterlogging in Quercus petraea (Matt.) Liebl. and Quercus robur L. as the initial response towards their known long-term differences in tolerance to waterlogging. One-month old seedlings were subjected to hypoxic stress and leaf gas exchange, shoot water potential (Ψs) and root hydraulic conductivity (Lpr) were measured. In parallel, the expression of nine aquaporins (AQPs) along the primary root was analysed by quantitative RT-PCR. Results showed a similar reduction in net assimilation (A) and stomatal conductance (gs) for the two species. Notably, the response of Lpr differed temporally between the two species. Q. robur seedlings exhibited a significant early decline of Lpr within the first 5 h that returned to control levels after 48 h, whereas Q. petraea seedlings showed a delayed response with a significant decrease of Lpr exhibited only after 48 h. Transcriptional profiling revealed that three genes (PIP1;3, TIP2;1 and TIP2;2) were differentially regulated under stress conditions in the two oak species. Taken together, these results suggested species-specific responses to short-term waterlogging in terms of root water transport.


Assuntos
Aquaporinas/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Quercus/genética , Quercus/fisiologia , Transcrição Gênica , Água/metabolismo , Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxigênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Quercus/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
2.
PLoS One ; 7(12): e51838, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284785

RESUMO

Aquaporins (AQPs) belong to the Major Intrinsic Protein family that conducts water and other small solutes across biological membranes. This study aimed to identify and characterize AQP genes in the primary root axis of two oak species, Quercus petraea and Quercus robur. Nine putative AQP genes were cloned, and their expression was profiled in different developmental root zones by real-time PCR. A detailed examination of the predicted amino acid sequences and subsequent phylogenetic analysis showed that the isolated AQPs could be divided into two subfamilies, which included six plasma membrane intrinsic proteins (PIPs) and three tonoplast intrinsic proteins (TIPs). We characterized the anatomical features of the roots and defined three developmental root zones: the immature, transition and mature zones. Expression analysis of the AQPs was performed according to these root developmental stages. Our results showed that the expression of PIP2;3 and TIP1 was significantly higher in Quercus petraea compared with Quercus robur in the three root zones. However, PIP2;1 and TIP2;1 were found to be differentially expressed in the mature zone of the two oak species. Of the nine AQP genes identified and analyzed, we highlighted four genes that might facilitate a deeper understanding of how these two closely related tree species adapted to different environments.


Assuntos
Aquaporinas/genética , Raízes de Plantas/genética , Quercus/genética , Sequência de Aminoácidos , Clonagem Molecular , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/química , Quercus/classificação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...